Exam 2

1. Consider

$$\lim_{(x,y)\to(0,0)} \frac{x^2y^4}{x^2+y^2}.$$

Compute the limit along the two lines y = 0 and y = mx.

- 2. Consider the velocity vector $\vec{v}(t) = e^t \vec{i} \sin(t) \vec{j} + \cos(t) \vec{k}$, with initial position $\vec{r}(0) = \vec{i} + \vec{j} + \vec{k}$. Compute $\vec{r}(t)$, the position vector.
- 3. Let $F(x,y) = \sin(x^2y^2)$, where $x = \sin(u) + \cos(v)$ and $y = e^{u+v}$. Use the chain rule (substitution will earn zero credit) to find $\frac{\partial F}{\partial v}$.
- 4. Let $\vec{r}(t) = 8t\vec{i} + 3\sin(t)\vec{j} + 3\cos(t)\vec{k}$. Find an expression for the unit tangent vectors $\mathbf{T}(t)$.
- 5. Find the maximum rate of change of $f(x,y) = e^{-xy}$ at (1,1) and the direction in which it occurs.

Bonus Questions:

- 6. Given $(x+y)^2 + \sin(x+y) = y$, use the Implicit Function Theorem to find $\frac{dy}{dx}$.
- 7. Find the tangent plane to $z = x^2 + y^2$ at (x, y) = (1, 2).